Estimating Conditional Quantiles with the Help
of the Pinball Loss

Ingo Steinwart
Information Sciences Group CCS-3
Los Alamos National Laboratory
Los Alamos, NM 87545, USA

ingo@lanl.gov

Andreas Christmann
University of Bayreuth
Department of Mathematics
D-95440 Bayreuth
Andreas.Christmann@uni-bayreuth.de

November 4, 2008

Abstract

Using the so-called pinball loss for estimating conditional quantiles is a well-
known tool in both statistics and machine learning. So far, however, only little
work has been done to quantify the efficiency of this tool for non-parametric (mod-
ified) empirical risk minimization approaches. The goal of this work is to fill
this gap by establishing inequalities that describe how close approximate pinball
risk minimizers are to the corresponding conditional quantile. These inequalities,
which hold under mild assumptions on the data-generating distribution, are then
used to establish so-called variance bounds, which recently turned out to play an
important role in the statistical analysis of (modified) empirical risk minimization
approaches. To illustrate the use of our new inequalities, we then utilize them to
establish an oracle inequality for support vector machines that use the pinball loss.
Here, it turns out that we obtain learning rates, which are optimal in a min-max
sense under some standard assumptions on the regularity of the conditional quan-
tile function.

1 Introduction

Let P be a distribution onX x Y, where X is an arbitrary set equipped withea
algebra, and C R is closed. The goal of quantile regression is to estimate the
conditional quantile, i.e., the set valued function

Fp(x) = {teR:P((—o0,t]|z) > 7andP([t,00) |z) >1 -7}, z¢€X,



wherer € (0,1) is a fixed constant specifying the desired quantile levelRfid x),

x € X, is the (regular) conditional probability ¢f. Let us assume for a momEht
that F* . (=) consists of singletons, i.e., there exists a functfop : X — R, called
the conditionalr-quantile function, such that’p(z) = {f;p(z)}, * € X. Then
one approach to estimate the conditionajuantile function is based on the so-called
7-pinball lossL : Y x R — [0, o0), which is defined by

Ly t) = {(1—7)(t—y) if y <t

)ty —t) ify>t.

With the help of this loss function we define tierisk of a (measurable) function
f: X —=Rby

Rep(f) = Egeyyor Ly, f(z)) = /X L f(@) dP(z.).

Now recall thatf; , is up toP x-zero sets thenly function that minimizes thé-risk,
i.e. RL7p(f:_:P) =inf Ry p(f) = P where the infimum is taken over all measur-
able functionsf : X — R. Based on this observation several estimators minimizing
a (modified) empiricall-risk were proposed (segl[7] for a survey on both paramet-
ric and non-parametric methods) for situations wHetis unknown, but i.i.d. samples
D := ((x1,91)s- -+, (Xn,yn)) € (X x Y)™ drawn fromP are given.

Empirical methods estimating quantile functions with the help of the pinball loss
typically obtain functiongfp for which R, p(fp) is close toR ] » with high probabil-
ity. In general, however, this only implies th4$ is close tof* ,, in a very weak sense
(see [18, Remark 3.18]), but recently, [15] establiskelf-calibration inequalitie®f
the form

If = fiplle.px) S cp/RLp(f) —Rip, 1)

which holds under mild assumptions &) which are described by the parameter
r € (0,1]. The first goal of this paper is to generalize and improve these inequali-
ties. Moreover, we will use these new self-calibration inequalities to estatai&mce
boundsfor the pinball risk, which in turn are known to improve the statistical analysis
of empirical risk minimization approaches.

The second goal of this paper is to apply the self-calibration inequalities and the
variance bounds to support vector machines (SVMs) for quantile regression. Recall,
that [12, 6 18] proposed an SVM that finds a solutfigim, € H of

1 n
arg}réig NI+ gz L(yi, (@), 2

=1

where)\ > 0 is a regularization parameter aftlis a reproducing kernel Hilbert space
(RKHS) overX. In [6],[18] it was worked out how to solve this optimization problem
with numerical techniques, which are nowadays standard in the machine learning lit-
erature. Moreover| [18] also provided an exhaustive empirical study which shows the

IMost of our main results later in this work do not require this assumption, but here in the introduction it
makes the exposition more transparent.



excellent performance of this SVM approach. We have recently established an oracle
inequality for these SVMs ir [15], which were based [oh (1) and the resulting variance
bounds. In this paper, we improve this oracle inequality with the help of the new self-
calibration inequalities and variance bounds. It turns out that the resulting learning
rates are substantially faster than those obtained in [15]. Finally, we briefly discuss an
adaptive parameter selection strategy, which is based on a training/validation approach.

The rest of this paper is organized as follows: In Sedion 2, we present both our
new self-calibration inequality and the new variance bound. We also introduce the
assumptions o that lead to these inequalities, and discuss how these inequalities
improve our former results in [15]. In Sectiph 3, we then use these new inequalities to
establish an oracle inequality for the SVM approach above. In addition, we discuss the
resulting learning rates and how these can be achieved in an adaptive way. Finally, all
proofs are contained in Sectiph 4.

2 Main results

In the following, X is an arbitrary, non-empty set equipped witlralgebra, and
Y C Ris aclosed non-empty set. Given a distributldon X x Y we further assume
throughout this paper that thealgebra onX is complete with respect to the marginal
distributionP x of P, i.e., every subset of B x-zero set is contained in thealgebra.
Since the latter can always be ensured by increasing the origiialgiebra in a suitable
manner we note that this is not a restriction at all.

In order to formulate the main results of this section, we need to introduce some
assumptions on the data-generating distribulorTo this end, let) be a distribution
onRR and7 € (0,1). Then ther-quantile ofQ is the set

FX(Q):={teR:Q((—o0,t]) > 7andQ([t,c0)) >1—7}.
It is not hard to show thaf’*(Q) is a bounded and closed interval. We write
in(Q) = min FX(Q)
tnax(Q) = max F7(Q),

and we usually omit the argumeqtif the considered distribution is clearly determined
from the context. We further need the following notion.

Definition 2.1 A distributionQ on R with supportsupp Q C [—1,1] is said to have
a T-quantile of typey € (1, 00), if there exist constanisq € (0,2] andbg > 0 such
that, for all s € [0, ag], we have

Q((train = Sotiaim)) = b s?™! ©)
Q((t;knax? t;knax + S)) Z bQ SQ71 ° (4)

Moreover, we say thaf) has ar-quantile of type; = 1, if both Q({¢%;,}) > 0 and
Q({tfax}) > 0. In this case, we defineg := 2 and

bQ = min{Q({tfrlirl})v Q({tfnax})} :



Finally, in both cases we define
TQ ‘= anqul . (5)

Leading examples for distributions havimeguantiles of typey = 2 for 7 € (0,1)
are distributions) with a Lebesgue densityq(xz) > bg > 0 for all z € supp Q.
Moreover, distributions of type # 2 can be realized by making appropriate assump-
tions on the behavior ol around the quantile of interest. Finally, note that these
distributions arenotthe only distributions of type.

As outlined in the introduction, we are not interested in a single distribu@iam
R but in distributionsP on X x R. The following definition extends the previous
definition to such probability measures.

Definition 2.2 Letp € (0,00] andgq € [1, 00). A distributionP on X x [—1, 1] is said
to have ar-quantile ofp-average type if for P x-almost allz € X the conditional
distributionP( - |z) has ar-quantile of typey, and the functiory : X — [0, cc] defined
by

Y(x) == VP(-|a) 5 z € X,

whereyp(. |, is given by), satisfieg™! € L,(Px).

In the following theorem, which establishes the announced self-calibration inequal-
ity, we need the distanagist(¢, A) between an elemente R and a subsetl C R,
i.e., the quantity
dist(t, A) := inf |t — s].
sEA

Moreover,dist(f, F;p) denotes the functiom — dist(f (), Fp(z)). With these
preparations the self-calibration inequality reads as follows.

Theorem 2.3 Let L be ther-pinball loss,p € (0, 00] andg € [1, c0) be real numbers,
andr := 2L Moreover, let® be a distribution onX x [—1,1] that has ar-quantile
of p-average type € [1,00). Thenforallf : X — [—1, 1] we have

. % _ —1y1 « 1/
| dist(f, F2p) 2, ) < 279y % (Rep(f) — Ry p) "

Let us briefly compare the self-calibration inequalities above with the ones we es-
tablished in[[15]. To this end, we can solely focus on the gase2, since this was the
only case considered ih [[L5]. For the same reason, we can restrict our considerations
to distributionsP that have a unique conditionatquantile f* (z) for P x-almost all
x € X. Then Theorerp 2|3 yields

* —1p1/2 « \1/2
If = el ey < 20071 5e ) (Rep(f) = Rip)

forr := p2f1- On the other hand, it was shown in [15] that

* — « \1/2
1f = Frplle, e < V2 5e ) (Rep(f) = Rip)




under theadditionalassumption that the conditional widths . |,y considered in Def-
inition[2.] areindependentrom z. This shows that our new self-calibration inequality
is more general and, modulo the constaf?; also stronger.

It is well-known that self-calibration inequalities for Lipschitz continuous losses
lead to variance bounds, which in turn are important for the statistical analysis of em-
pirical risk minimization approaches, see([8[ 9} [10,[11,11, 2]. For the pinball loss, the
self-calibration inequality established above leads to the following variance bound.

Theorem 2.4 Let L be ther-pinball loss,p € (0, 00] andg € [1, c0) be real numbers,
and

Moreover, letP be a distribution onX x [—1, 1] that has ar-quantile ofp-average
typeg. Thenforallf : X — [-1,1] there exists a functiofi’, : X — [-1,1] with
S p(r) € Fp(z) for Px-almost allz € X such that

« 12 _ _ . « \?
Ep(Lof—Lofip) <227¢" I 7, py) (Rp(f) —Rip)"
where we used the shorthafid f for the function(z, y) — L(y, f(x)).

Again, it is straightforward to show that the variance bound above is both more
general and stronger than the variance bound we established]in [15]. We omit the
details for the sake of brevity.

3 An Application to Support Vector Machines

The goal of this section is to establish an oracle inequality for the SVM defingdl in (2).
The use of this oracle inequality is then illustrated by some learning rates we derive
from it.

Let us begin by recalling some RKHS theory (see, €.dl, [16, Chapter 4] for a more
detailed account). To this end, let: X x X — R be a measurable kernel, i.e., a
measurable function that is symmetric and positive definite. Then the associated RKHS
H consists of measurable functions. Let us additionally assumé fkdtounded with
|Elloo = sup,ex vA(z,2) < 1, which in turn implies thai{ consists of bounded
functions and| f || < ||f||x forall f € H.

Suppose now that we have a distributidron X x Y. To describe the approxima-
tion error of SVMs we need thapproximation error function

AW = fuf A1+ Rep(f) = Rip. A>0,

whereL is ther-pinball loss. Recall that[16, Lemma 5.15 and Theorem 5.31], see also
[17], showedimy_.o A(A) = 0, if the RKHS H is dense inL; (Px), and the speed of
this converge describes how wéll approximates the Baydsrisk. In particular, [[16,
Corollary 5.18] shows thati(\) < ¢\ for some constant > 0 and allA > 0 if and

only if there exists arf € H such thatf(z) € Fp(z) for Px-almost allz € X.



In order to describe the capacity of the RKHSwe further need the integral oper-
atorTy : L2(Px) — L2(Px) that is defined by

Tof(-) = /X Kz, ) f(2) dPx (). f € Lo(Py).

It is well-known that this integral operator is self-adjoint and nuclear, see, le.g., [16,
Theorem 4.27]. Consequently, it has at most countably many eigenvalues (including
geometric multiplicities), which are all non-negative, and which, as a sequence, are
summable. In the following we order these eigenvaligdy,). Moreover, if we only

have finitely many eigenvalues we extend this finite sequence by zeros. As a result,
we always can deal with a decreasing, hon-negative seque(i€g) > X2 (%) > ...

which satisfies

i Al(Tk) < 0.
=1

The finiteness of this sum can already be used to establish oracle inequalities, see
e.g. [16, Theorem 7.22], but in the following we assume that the eigenvalues con-
verge even faster to zero, singgthis case is satisfied for many RKHSs djdt leads

to better oracle inequalities. To be more precise, we assume that there exist constants
a > 1andp € (0, 1) such that

Ne(Ty) < ai™te i>1. (6)

One can show that this eigenvalue assumption is equivalent to an entropy humber as-
sumption on the inclusiofl : H — Ly(Px). Namely, @5) is satisfied if and only if we
have

ei(id: H — Ly(Px)) < Vai~/ () i>1,

wheree;(.S) denotes theé-th (dyadic) entropy numbers of a bounded linear operator
S. We refer to[[4] for information regarding entropy numbers and to [14] for a brief
argument for this equivalence.

Finally, we also need the clipping operation, which, for fixdd> 0, is defined by

-M ift<-M
T:=<t if t € [-M, M] @)
M ift>M

for all t € R. In the following, we assume that := 1 if not stated otherwise. With
the help of these notations we can now formulate the following oracle inequality which
is just a particular case of a more general inequality establishedlin [16, Theorem 7.23].

Theorem 3.1 Let L be ther-pinball loss andP be a distribution onX x [—1, 1] for
which there exists a functioff p : X — R with f7 (z) € F p(z) for P x-almost all
r € X. We further assume that there exist constants 22~ and4d € [0, 1] such
that
* 2 % 9
EP(LOf—LOfT,P) < V(RL,P(f) _RL,P) (8)



forall f: X — [—1,1]. Moreover, letH be a RKHS oveX with bounded measurable
kernel satisfying|k||, < 1. In addition, assume th4t|(6) is satisfied. Then there exists
a constantX” depending only o, V', andp such that foralk > 1,n > 1, and\ > 0

we have with probability not less thdn— 3e~* that

- . AN ¢ al \z=g—979s
Rrp(for) —Rrp < 9A(N) +30 ¥5+K(W) o
72Ve\7=%
w(=7)

Let us now illustrate how this oracle inequality can be used to establish learning
rates for estimating conditional quantiles. To this end, we assume that there exist con-
stantse > 0 andg € (0, 1] such thatd()\) < cA\? forall A > 0. Then itis easy to show,

see[[16, Lemma A.1.7], thatL,p(f]\),An) converges ta; p with raten™7, where

’y':min{ b 25 }
' BR—-9+0)—0)+o f+1)°

(9)

provided that we have chosérby \,, = n~?/#. Note that this choice of yields the
best learning rates from Theor¢m|3.1. Unfortunately, however, this choice requires to
know the usually unknown parametg¥sy, andp. On the other handl [16, Theorem
7.24] shows that this rate can also be achieved by seleitin@g data-dependent way
with the help of a validation data set. In other words, the learning rates above can be
achieved without knowing the existence of the above parameters nor their particular
values.

Let us now consider how these learning rates in terms of risks translate into rates
for

N *
/DA, — fT,P |LT(PX) .

To this end, we assume thBthas ar-quantile ofp-average type, where we addi-
tionally assume for the sake of simplicity that= % < 2. Note that the latter is
satisfied for allp if ¢ < 2, i.e., if all conditional distributions are concentrated around
the quantile as least as much as the uniform distribution. We refer to the discussion
following Definition[2.] for a precise statement. Moreover, we additionally assume
that the conditional quantiles; ,(x) are singletons foP x-almost allz € X. Then
Theorenj 24 provides a variance bound of the fdrin (8)for p/(p + 1), and hence

~ defined in[(p) becomes

:mm{ Blp+1) 20 }
7 B24+p—0o)+olp+1) 3+1

By Theore we consequently see tnﬁhn — [ZpllL,.(px) cOnverges with rate
n~7/% to zero, where- := pq/(p + 1). To illustrate this learning rate, let us assume
that we have picked a RKHE with f’, € H. Then we haves = 1, and hence itis
easy to check that the latter learning rate reduces to

___ptl
n a(@+p+tep) |



For the sake of simplicity, let us further assume that the conditional distributions do not
change too much in the sense that co. Then we have = ¢ and the learning rate

N\
for lfp.n, — frpllz,px) becomes
1
n a0+e) |

In other words,
/ \fox, — fip|"dPx (10)
JX

converges with rate—!/(1+2), The latter shows that the valuegfloes not change the
learning rate for[(10), but only the exponent[in](10). Now note that by our assumption
on P and the definition of the clipping operation we have

1foa, = el <2,

and consequently small values pémphasize the discrepancyfmn to f*p more
than large values of do. In this sense, a stronger average concentration around the
quantile of interest is helpful for the learning process.

Let us now have a closer look to the special agase2, which is probably the most
interesting case for applications. Then we have the learningurateé2(1+2)) for

N *
[fox, = frpllLaey) -

Now recall that the conditional median equals the conditional measyfametriccon-
ditional distributionsP( - |z). Moreover, if H is a Sobolev spac& ™ (X), where

m > d/2 denotes the smoothness index aXids the unit ball inRR¢, then H con-

sists of continuous functions, arid [5] shows th&satisfies[(p) for := d/(2m) and

P x being the uniform distribution oX . Consequently, we we see that in this case the
latter convergence rate is optimal in a min-max sense. Finally, recall that in the case
8 =1, q=2,andp = oo discussed so far, the results derivedby [15] only yielded a
learning rate of,~/(3(1+2)) for

N *
[fon. = frellLapy) -

In other words, the earlier rates from [15] are not only worse by a factdy dfn the
exponent but also stated in terms of the weakgP x )-norm. In addition,[[15] only
considered the cage= 2, and hence we see that our new results are also more general.

4 Proofs

Let us first recall some notions from [13] and [16, Chapter 3] which investigated sur-
rogate losses in general and the question of how approximate risk minimizers approxi-
mate exact risk minimizers in particular. To thisend,letX x Y x R — [0, 00) be



a measurable function, which we call a loss in the following. For a distribdtiand
anf : X — R theL-risk is then defined by

Rip(f) = /X M @) dP(ey).

and, as usual, the Bayésrisk, is denoted byR] p := inf R p(f), where the infi-
mum is taken over all measurable functighs X — IR. In addition, given a distribu-
tion Q onY theinner L-riskswere defined by

Cr,q.z(t) 1:/Y (z,y,t) dQ(y), r€X,teR,

and theminimal innerL-riskswere denoted by¢; Qu =infCp q . (t), z € X, where
the infimum is taken over all € R. Moreover, foIIowmg [13] we usually omit the
indexesr or Q if L is independent aof or y, respectively. Obviously, we have

Rep(f) = /X Crp(. oy ((2)) dPx (), (11)

and [13, Theorem 3.2] further shows that— C7 ;, is measurable if the--

E

algebra onX is complete. In this case, it was also shown that the intuitive formula

’R’z,P = /X CZ,P( ),z dPx (CL’)

holds, i.e. the Bayes-risk is obtained by minimizing the inner risks and subsequently
integrating with respect to the marginal distributidr . Based on this observation the
basic idea in[[13] is to consider both steps separately. In particular, it turned out that
the sets ot-approximate minimizers

M (e —{tGIR CLQI()<CE,Q;$+5}, e €10,00],

and the set oéxact minimizers

Mrqa(07) = [ Mrqule)

e>0

play a crucial role. As in [113] we again omit the subscrip@sndQ in these definitions
if L happens to be independentaobr y, respectively.

Let us now compute the excess inner risks and the set of exact minimizers for the
pinball loss. To this end recall (see, e.gl, [3, Theorem 23.8]) that given a distriliytion
on R and anon-negativeneasurable functiop : X — [0, co) we have

/ﬂ'{ng/O'OOQ@zs)ds. (12)

With the help of these preparations we can now show the following preliminary result,
which is a generalization of [16, Proposition 3.9].



Proposition 4.1 Let L be ther-pinball loss and) be a distribution orR with ;.
oo. Then there existy, ¢ € [0,1] with ¢ + ¢— = Q([t* and for allt > 0
we have

min? max])

t
CrQltmax +t) —CLq = tqy+ / Q((Fras tinaxe + ) ds (13)
0

t
Craltn—0~Ciq = to+ [ Qllthy —sthw)) ds. (14
0
In addition, we haveV;, o (07) = F*(Q).

Proof: Obviously, we haveQ((—oo, t%,.]) + Q([thao 00)) = 1+ Q({tf.}), and
hence we obtaim < Q((—o00,t},.,]) < 7+ Q({t}ax})- In other words, there exists a

? Ymax

g+ € [0,1] satisfying0 < ¢+ < Q({t%,.}) and
Q(( 00, tmax]) =T+ q+ . (15)

Let us consider the distributiony defined bngA) = Q(t} . +A) for all measurable
A C R. Then itis not hard to see thgt . (Q) = 0. Moreover, we obviously have
Cr,q(thax 1) =Cp o(t) forallt € R. Let us now compute the inner risks bfwith

respect t(Q. To this end, we fix @ > 0. Then we have

/ (y=0)dQy) - / Q) —1Q((-x.0) + / Q)

and
[ -0 = [ yadw - Qi) - [ yiQw
y>t y>0 0<y<t

and hence we obtain

Corlt) = (r—1) / _=0d0E) - / _w=Hdw)

= Co.1(0) — Tt +1Q((—00,0)) +Q([0,1)) — /0</ Q).

Moreover, using[(1]2) we find

1((0,1)) - / __vQ) / Q0. 1)ds - / Qls. ¢
— Qo)) + / Q(0, 5))ds
0

and since5) implie§((—oc0,0)) +Q({0}) = Q((—o0,0]) = 7+ ¢, we thus obtain
(I3). Now [14) can be derived frofn (13) by considering the pinball loss with parameter
1 — 7 and the distributior) defined byQ(A) := Q(—t%;, — A), A C R measurable.
This further yields @_ satisfyingd < ¢_ < Q({t%,;,}) andQ([t%;,, 00) = 1—7+¢q_.

By (I5) we then findj +¢— = Q([t},;n thax))- The final assertion now easily follows

from the formulas for the excess risks, and is, in addition, also well-known. W

10



For the proof of Theorein 2.3 we need to recall a few more concepts fram [13] or
[16, Chapter 3]. To this end, let us now assume that our loss is independeieofve
consider a measurable functién: Y x R — [0, oo]. We write

Omin(L) == {Q: Qs adistribution orR such thatM o (07) # 0},

i.e. Omin (L) contains the distributions dR whose innet.-risks have at least one exact
minimizer. Furthermore, note that this definition immediately yi€lgs, < oo for all
Q € Qmin(L). Following [13] we now define theelf-calibration losof L by

L(Q,t) = inf t—t* min(L), t €R. 16
Q1) = nf = Q€ Quin(L), t € (16)

This loss is aemplateloss in the sense of [13] or [16, Chapter 3], i.e., for a given
distributionP on X x Y, whereX has a complete-algebra and( - [z) € Quin(L)
for P x-almost allxz € X, theP-instance

Lp(x,t) := L(P(-|x),t), ze X, teR,

is measurable, and hence aloss! [13] of [16, Chapter 3] extended the definition of inner
risks to the self-calibration loss by settidg (¢) := L(Q,t), and based on this, the
minimal inner risks and their (approximate) minimizers were defined in the obvious
ways. Moreover, theelf-calibration functiorwas defined by

0 ax i.1(6,Q) == dist(t, ML q(07)) := inf Crqt)—Crq-
" teR: L(Q,t)>e

As shown in[[13] or[[16, Chapter 3.9] the self-calibration function satisfies
O a1, (dist(t, M1 q(0%)), Q) < Crq(t) —Ciq, teR, (17)

i.e. it measures how well asrapproximatel-risk minimizert approximate the set of
exactL-risk minimizers.

Our next goal is to estimate the self-calibration function for the pinball loss. To this
end we need the following simple technical lemma.

Lemma 4.2 For o € [0,2] andq € [1,00) consider the functioi : [0,2] — [0, o)

defined by
el if e€][0,q]
6(e) :=
(¢) {qoﬂ_ls —al(g—1) if e€la,2].

Then for alle € [0, 2] we have

56> (2) e

Proof: Sincea < 2 andg > 1 we easily see by the definition éfthat the assertion is
true fore € [0, «]. Now consider the functioh : [0,2] — R defined by

h(e) :=qa?'e —ai(qg—1) — (%)qilsq

11



for all e € [0,2]. Obviously, it suffices to show thét(c) > 0 for all ¢ € [«,2]. To
show the latter we first check that

q—1
W(e) = qat™! — q(g)

and hence we havé(¢) > 0 for all € [0, 2]. From this,a < 2, and

oy =an- (3) =i (3)) =0

we then obtain the assertion. [ |

Lemma 4.3 Let L be ther-pinball loss andQ be a distribution orR with supp Q C
[—1, 1] that has ar-quantile of typey € [1,00). Moreover, letng € (0,2] andbg > 0
denote the corresponding constants. Then foe &l [0, 2] we have

_ ag )it
6max,i,L(E7 Q) Z q 1bQ(7Q) Eq .

Proof: Obviously, the map — Cyr, q(t) — Ci q Is convex, and thus it is decreasing on
(—o0, t;,] @and increasing offt};,,.., 00). SinceM o(07) = F*(Q) is an interval,
we hence find

M q(e) = {t €R: L(Q,1) < e} = (buin — & b + €)
for all e > 0. This gives

5 = inf  Cro(t)—C:
max,L,L(E’ Q) t&./\/llrLlQ(E) L,Q( ) L,Q

= min{Crqthm — ).Caltims+2)} ~Cig.  (18)
Let us first consider the cagec (1,00). Fort € [0, aq], Equations[(18) an{([4) then
yield

t
CL,Q(t:Knax + t) - CZQ = tq+ + / Q((t:naxa t:nax + S)) ds
0

t
> bQA s ds

= q_letq .
In addition, forg = 1 this inequality follows in a similar fashion from ([L3), and an
analogue estimate fafy, q(ty,,, —t) — Cf o can be shown by using (14) ar{d (3).
Having established these inequalities we then conclude By (18) that
6111ax,E,L(E7Q) Z q_legq

forall e € [0, aq]. Now the assertion follows from Lemrha }4.2. [ |
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In the following, we say that a distributio on X x Y is of type Q, whereQ
is some set of distributions oR, if P(-|x) € Q for Px-almost allz € X. Now
we can formulate our last auxiliary result, which establishes a general self-calibration
inequality.

Proposition 4.4 Let M > 0andL : R x R — [0, 00) be a convex loss such that for
everyy € [—M, M] the functionL(y, -) : R — [0,00) has at least on global mini-
mizer that is contained ifi- M, M]. Moreover, letP be a typeQ,.i, (L) distribution
onX x [-M, M]with R} p < oco. Assume that there exigte (0, 0], ¢ > 0, and a
functiony : X — [0, co] withy~! € £,(Px) and

) (e,P(|x),z) > vy(x)e?, e€[0,2M], z € X.

max,Lp,L
Then for all measurabl¢ : X — [—M, M| we have

pt1
Prq

( /X (zp(x,f(:c)))dex(l')) T < ey (Ree(h —Rip)

Proof: Fory € [—M, M], we denote the set of minimizers 8{y, -) : R — [0, c0)
by M, := {t* € R: L(y,t*) = inf,cr L(y, t)}. Note that the convexity af implies
thatM, is a closed interval. Moreover, by our assumptions we balgn [— M, M| #
¢, and hence we havef M, < M andsup M, > —M. In addition, the convexity of
L shows thatL(y, - ) : R — [0, 00) is increasing onsup M, co) and decreasing on
(—o0,inf M,]. Hence we have

where? denotes the clipped value bat+ 1, seelﬂ?). From this it is easy to conclude
that
Crq(?) <Crq(t)
for all t € R and all distributions) whose support is contained jr M, M]. Con-
sequently, we havé, o(07) N [—M, M] # 0 for all suchQ, which in turn implies
that
L(Q,t) < 2M, t e [—M,M)].

Now the assertion follows fronji (17) and the prooflofl[13, Proposition 3.19]. W
Proof of Theoren{ 2.B:By Lemmg 4.8 we obtain a lower bound on the self-calibration
function of the pinball loss. MoreoveP, is a typeQ.,i» (L) distribution, since the con-

ditional minimizers, which are the conditionalquantiles, do exist. Now the assertion
follows from Propositiof 4}4. [ |

Proof of Theorenf 2.4Let f : X — [~1, 1] be a measurable function affifl, : X —
[—1, 1] be theP x-almost surely uniquely determined measurable function that satisfies
both

frp(@) € Flp(z)
[f(@) = fip(@)| = dist(f(x), F;p(2))
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for P x-almost allz € X. Let us writer := %. We first consider the case< 2, i.e.,
2 < k.. Using the Lipschitz continuity of. and Theore3 we then obtain

* 2 *
I[‘EP(Lof—LO T,P) EPx|f—fT,P\2
If = il " Eoxlf — fipl”

—r =" I "
92 /qqr/qu 1HL/pq(Px) (RLp(f)_ L,P) .

IN N

IN

Sinceg = Iﬁ = 19, we thus obtain the assertion in this case. Let us now consider the
caser > 2. The Lipschitz continuity of. and Theorerf 2|3 then yields

N2/
Ep(LOf—Lof:’p)z < (EP(LOf_LOf:,P) )2

. i 2/r
< (Boslf — £0l")
_ — 1 . 1/ ’
= 2R (Rep(f) = Rip) .
Since forr > 2 we have = 2/¢ we again obtain the assertion. .
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